高倍率聚合物鋰電池低溫性能改善解析
高倍率聚合物鋰電池以其高比能量和功率密度、長(zhǎng)循環(huán)壽命、無(wú)記憶效應(yīng)、自放電小以及友好的環(huán)境等特點(diǎn),在消費(fèi)類(lèi)電子產(chǎn)品、電動(dòng)汽車(chē)和儲(chǔ)能等領(lǐng)域得到了廣泛的應(yīng)用。不過(guò)高倍率聚合物鋰電池在實(shí)際應(yīng)用中仍然存在較多問(wèn)題,比如在低溫條件下能量密度明顯降低,循環(huán)壽命也相應(yīng)受到影響,嚴(yán)重限制高倍率聚合物鋰電池的規(guī)模使用。
目前,研究者們對(duì)造成高倍率聚合物鋰電池低溫性能差的主要因素尚有爭(zhēng)論,但究其原因有以下三個(gè)方面的因素:
一、高倍率聚合物鋰電池低溫下電解液的粘度增大,電導(dǎo)率降低;
二、高倍率聚合物鋰電池電解液/電極界面膜阻抗和電荷轉(zhuǎn)移阻抗增大;
三、鋰離子在活性物質(zhì)本體中的遷移速率降低,由此造成低溫下電極極化加劇,充放電容量減小。
另外,高倍率聚合物鋰電池在低溫充電過(guò)程中尤其是低溫大倍率充電時(shí),負(fù)極將出現(xiàn)鋰金屬析出與沉積,沉積的金屬鋰易與電解液發(fā)生不可逆反應(yīng)消耗大量的電解液,同時(shí)使SEI膜厚度進(jìn)一步增加,導(dǎo)致電池負(fù)極表面膜的阻抗進(jìn)一步增大,電池極化再次增強(qiáng),最將會(huì)極大破壞電池的低溫性能、循環(huán)壽命及安全性能。
這里我們系統(tǒng)地分析高倍率聚合物鋰電池低溫性能的主要限制因素,從正極、電解液、負(fù)極三個(gè)方面討論近年來(lái)研究者們提高電池低溫性能的改性方法。
一、高倍率聚合物鋰電池正極材料
正極材料是制造高倍率聚合物鋰電池關(guān)鍵材料之一,其性能直接影響電池的各項(xiàng)指標(biāo),而材料的結(jié)構(gòu)對(duì)鋰離子電池的低溫性能具有重要的影響。
橄欖石結(jié)構(gòu)的LiFePO4放電比容量高、放電平臺(tái)平穩(wěn)、結(jié)構(gòu)穩(wěn)定、循環(huán)性能優(yōu)異、原料豐富等優(yōu)點(diǎn),是鋰離子動(dòng)力電池主流正極材料。但是磷酸鐵鋰屬于Pnma空間群,P占據(jù)四面體位置,過(guò)渡金屬M(fèi)占據(jù)八面體位置,Li原子沿[010]軸一維方向形成遷移通道,這種一維的離子通道導(dǎo)致了鋰離子只能有序地以單一方式脫出或者嵌入,嚴(yán)重影響了鋰離子在該材料中的擴(kuò)散能力。尤其在低溫下本體中鋰離子的擴(kuò)散進(jìn)一步受阻造成阻抗增大,導(dǎo)致極化更加嚴(yán)重,低溫性能較差。
鎳鈷錳基LiNixCoyMn1-x-yO2是近年來(lái)開(kāi)發(fā)的一類(lèi)新型固溶體材料,具有類(lèi)似于LiCoO2的α-NaFeO2單相層狀結(jié)構(gòu)。該材料具有可逆比容量高,循環(huán)穩(wěn)定性好、成本適中等重要優(yōu)點(diǎn),同樣在動(dòng)力電池領(lǐng)域?qū)崿F(xiàn)了成功應(yīng)用,并且應(yīng)用規(guī)模得到迅速發(fā)展。但是也存在一些亟需解決的問(wèn)題,如電子導(dǎo)電率低、大倍率穩(wěn)定性差,尤其是隨著鎳含量的提高,材料的高低溫性能變差等問(wèn)題。
富鋰錳基層狀正極材料具有更高的放電比容量,有望成為下一代鋰離子電池正極材料。然而富鋰錳基在實(shí)際應(yīng)用中存在諸多問(wèn)題:首次不可逆容量高,在充放電的過(guò)程中易由層狀結(jié)構(gòu)向尖晶石結(jié)構(gòu)轉(zhuǎn)變,使得Li+的擴(kuò)散通道被遷移過(guò)來(lái)的過(guò)渡金屬離子堵塞,造成容量衰減嚴(yán)重,同時(shí)本身離子以及電子導(dǎo)電性不佳, 導(dǎo)致倍率性能和低溫性能不佳。
改善高倍率聚合物鋰電池正極材料在低溫下離子擴(kuò)散性能的主流方式有:
1.采用導(dǎo)電性?xún)?yōu)異的材料對(duì)活性物質(zhì)本體進(jìn)行表面包覆的方法提升正極材料界面的電導(dǎo)率,降低界面阻抗,同時(shí)減少正極材料和電解液的副反應(yīng),穩(wěn)定材料結(jié)構(gòu)。
采用循環(huán)伏安和交流阻抗法對(duì)碳包覆的LiFePO4的低溫性能進(jìn)行了研究,發(fā)現(xiàn)隨著溫度的降低其放電容量逐漸降低,-20°C時(shí)容量?jī)H為常溫容量的33%。作者認(rèn)為隨著溫度降低,電池中電荷轉(zhuǎn)移阻抗和韋伯阻抗逐漸變大,CV曲線(xiàn)中的氧化還原電位的差值增大,這表明在低溫下鋰離子在材料中的擴(kuò)散減慢, 電池的法拉第反應(yīng)動(dòng)力學(xué)速率減弱造成極化明顯增大。
圖1 LFP/C在不同溫度下的CV(A)和 EIS(B)曲線(xiàn)圖
設(shè)計(jì)合成了一種快離子導(dǎo)體包覆鎳鈷錳酸鋰的復(fù)合正極材料,該復(fù)合材料顯示出優(yōu)越的低溫性能和倍率性能,在-20°C仍保持127.7mAh·g-1的可逆容量,遠(yuǎn)優(yōu)于鎳鈷錳酸鋰材料86.4mAh·g-1。通過(guò)引入具有優(yōu)異離子電導(dǎo)率的快離子導(dǎo)體來(lái)有效改善Li+擴(kuò)散速率,為鋰離子電池低溫性能改善提供了新思路。
2.通過(guò)Mn、Al、Cr、Mg、F等元素對(duì)材料本體進(jìn)行體相摻雜,增加材料的層間距來(lái)提高Li+在本體中的擴(kuò)散速率,降低Li+的擴(kuò)散阻抗,進(jìn)而提升電池的低溫性能。
采用Mn摻雜制備碳包覆的LiFePO4正極材料,相比原始LiFePO4,其在不同溫度下的極化均有一定程度的減小,顯著提升材料低溫下的電化學(xué)性能。Li等對(duì)LiNi0.5Co0.2Mn0.3O2材料進(jìn)行Al摻雜,發(fā)現(xiàn)Al增大了材料的層間距,降低了鋰離子在材料中的擴(kuò)散阻抗,使其在低溫下的克容量大大提高。
磷酸鐵鋰正極材料在充電過(guò)程從磷酸鐵鋰相至磷酸鐵相間的相轉(zhuǎn)變比放電過(guò)程從磷酸鐵相至磷酸鐵鋰相間的相轉(zhuǎn)變更緩慢,而Cr摻雜可促進(jìn)放電過(guò)程從磷酸鐵相至磷酸鐵鋰相間的相轉(zhuǎn)變,從而改善LiFePO4的倍率性能和低溫性能。
3.降低材料粒徑,縮短Li+遷移路徑。需要指出的是,該方法會(huì)增大材料的比表面積從而與電解液的副反應(yīng)增多。
研究粒徑對(duì)碳包覆LiFePO4材料低溫性能的影響,發(fā)現(xiàn)在-20°C下材料的放電容量隨著粒徑的減小而增大,這是因?yàn)殇囯x子的擴(kuò)散距離縮短, 使脫嵌鋰的過(guò)程變得更加容易。Sun等研究表明,隨著溫度的降低LiFePO4的放電性能顯著降低,粒徑小的材料具有較高的容量和放電平臺(tái)。
二、高倍率聚合物鋰電池電解液
電解液作為鋰離子電池的重要組成部分,不僅決定了Li+在液相中的遷移速率,同時(shí)還參與SEI膜形成,對(duì)SEI膜性能起著關(guān)鍵性的作用。低溫下電解液的黏度增大,電導(dǎo)率降低,SEI膜阻抗增大,與正負(fù)極材料間的相容性變差,極大惡化了電池的能量密度、循環(huán)性能等。
目前,通過(guò)高倍率聚合物鋰電池電解液改善低溫性能有以下兩種途徑:
1.通過(guò)優(yōu)化溶劑組成,使用新型電解質(zhì)鹽等途徑來(lái)提高電解液的低溫電導(dǎo)率;
2.使用新型添加劑改善SEI膜的性質(zhì),使其有利于Li+在低溫下傳導(dǎo)。
1.優(yōu)化溶劑組成
電解液的低溫性能主要是由其低溫共熔點(diǎn)決定,若熔點(diǎn)過(guò)高,電解液易在低溫下結(jié)晶析出,嚴(yán)重影響電解液的電導(dǎo)率。碳酸乙烯酯(EC)是電解液主要溶劑組分,但其熔點(diǎn)為36°C,低溫下在電解液中溶解度降低甚至析出,對(duì)電池的低溫性能影響較大。通過(guò)加入低熔點(diǎn)和低黏度的組分,降低溶劑EC含量,可以有效降低低溫下電解液的黏度和共熔點(diǎn),提高電解液的電導(dǎo)率。
通過(guò)EC和聚(乙二醇)二甲醚兩種溶劑混和獲得非晶態(tài)電解液,僅在-90°C附近出現(xiàn)了一個(gè)玻璃化轉(zhuǎn)變溫度點(diǎn),這種非晶態(tài)的電解液極大地提高了電解液在低溫下的性能;在-60°C下,其電導(dǎo)率仍然能夠達(dá)到0.014mS·cm-1,為鋰離子電池在極低溫度下使用提供了一個(gè)良好的解決方案。
鏈狀羧酸酯類(lèi)溶劑具有較低的熔點(diǎn)和黏度,同時(shí)它們的介電常數(shù)適中,對(duì)電解液的低溫性能具有較好的影響。Dong等采用乙酸乙酯(EA) 作為共溶劑,雙三氟甲基磺酸亞胺鋰作為電解質(zhì)鹽,該電解液的理論熔點(diǎn)達(dá)到-91°C,沸點(diǎn)達(dá)到81°C。結(jié)果表明,該電解液即便是在-70°C的極限低溫下,離子電導(dǎo)率仍達(dá)到0.2mS·cm-1,結(jié)合有機(jī)物電極作為正極和1,4,5,8-萘酐衍生的聚酰亞胺作為負(fù)極,該電池在-70°C下仍然具有常溫容量的70%。
對(duì)鏈狀羧酸酯類(lèi)作為電解液共溶劑提高電池的低溫性能做了大量研究。研究表明,以乙酸乙酯、丙酸乙酯、乙酸甲酯、丁酸甲酯作為電解液共溶劑有利于電解液低溫電導(dǎo)率的提高,極大地改善了電池的低溫性能。
2.新型電解質(zhì)鹽
電解質(zhì)鹽是電解液的重要組成之一,也是獲得優(yōu)良低溫性能的關(guān)鍵因素。目前,商用電解質(zhì)鹽是六氟磷酸鋰,形成的SEI膜阻抗較大,導(dǎo)致其低溫性能較差,新型鋰鹽的開(kāi)發(fā)迫在眉睫。四氟硼酸鋰陰離子半徑小,易締合,電導(dǎo)率較LiPF6低,但是低溫下電荷轉(zhuǎn)移阻抗小,作為電解質(zhì)鹽具有良好的低溫性能。
以L(fǎng)iNiO2/石墨為電極材料,研究發(fā)現(xiàn)低溫下LiBF4的電導(dǎo)率低于LiPF6,但其低溫-30°C的容量為常溫容量的86%,而LiPF6基電解液僅為常溫容量的72%,這是由于LiBF4基電解液的電荷轉(zhuǎn)移阻抗較小,低溫下的極化小,因此電池的低溫性能較好。然而LiBF4基電解液無(wú)法在電極界面形成穩(wěn)定的SEI膜,造成容量衰減嚴(yán)重。
二氟草酸硼酸鋰(LiODFB)作為鋰鹽的電解液在高低溫條件下都具有較高的電導(dǎo)率, 使鋰離子電池在寬溫度范圍內(nèi)展現(xiàn)出優(yōu)異的電化學(xué)性能。Li等研究發(fā)現(xiàn)LiODFB/LiBF4-EC/DMS/EMC電解液在低溫下具有良好的低溫性能,測(cè)試表明石墨/Li扣式電池在低溫-20°C,0.5C循環(huán)20周后容量保持率為:LiODFB/LiBF4EC/DMS/EMC (53.88%) > LiPF6EC/DEC/DMC/EMC (25.72%) ,前者容量保持率遠(yuǎn)高于后者,該電解液在低溫環(huán)境下具有良好的應(yīng)用前景。
LiTFSI作為新型鋰鹽具有高的熱穩(wěn)定性,陰陽(yáng)離子的締合度小,在碳酸酯體系中具有高的溶解度和解離度。在低溫情況下,LiFSI體系電解液較高的電導(dǎo)率和較低的電荷轉(zhuǎn)移阻抗保證了其低溫性能。Mandal等采用LiTFSI作為鋰鹽,EC/DMC/EMC/PC(質(zhì)量比15:37:38:10)為基礎(chǔ)溶劑,所得電解液在-40°C下仍具有2mS·cm-1的高電導(dǎo)率。
3.高倍率聚合物鋰電池添加劑
SEI膜對(duì)電池的低溫性能有很重要的影響,它是離子導(dǎo)體和電子絕緣體,是Li+從液相到達(dá)電極表面的通道。低溫時(shí),SEI膜阻抗變大,Li+在SEI膜中的擴(kuò)散速率急劇降低, 使得電極表面電荷累積程度加深,導(dǎo)致石墨嵌鋰能力下降,極化增強(qiáng)。通過(guò)優(yōu)化SEI膜的組成及成膜條件,提高SEI膜在低溫下的離子導(dǎo)電性有利于電池低溫性能的提高, 因此開(kāi)發(fā)低溫性能優(yōu)異的成膜添加劑是目前的研究熱點(diǎn)。
研究以FEC作為電解液添加劑對(duì)電池低溫性能的影響,研究結(jié)果表明,石墨/Li半電池在-20°C低溫下,添加2%FEC的電解液比基礎(chǔ)電解液在-20°C首次放電時(shí)容量增加了50%, 且充電平臺(tái)降低了0.2V左右。XPS 測(cè)試表明,添加FEC電解液所形成的SEI膜中比未添加FEC的電解液所形成的SEI膜中的LiF的含量高,其有利于低溫下SEI膜的阻抗的降低,進(jìn)而提高了電池的低溫性能。
研究發(fā)現(xiàn)添加LiPO2F2能夠顯著改善LiNi0.5Co0.2Mn0.3O2/石墨軟包電池的低溫性能,含LiPO2F2電解液電池在低溫0°C和-20°C循環(huán)100周后容量保持率分別為96.7%和91%,而基礎(chǔ)電解液在循環(huán)100周后容量保持率僅為20.1%和16.0%。對(duì)LiNi0.5Co0.2Mn0.3O2/Li和全電池及石墨/Li半電池進(jìn)行EIS測(cè)試,結(jié)果表明添加LiPO2F2能夠顯著降低石墨負(fù)極SEI膜阻抗和電荷轉(zhuǎn)移阻抗,減小低溫下的極化。
研究表明電解液中BS(butyl sultone, BS)的加入有利于低溫下電池放電容量 和倍率性能的提高, 其采用EIS、XPS等手段對(duì)BS的作用機(jī)理進(jìn)行了深入的探討。在-20°C下,添加BS后阻抗RSEI和Rct分別由4094Ω、8553Ω降至3631Ω、3301Ω,表明 BS的加入提高了鋰離子的電荷轉(zhuǎn)移速率,大大降低了低溫下的極化。XPS測(cè)試表明 BS有利于SEI膜的形成,其能形成具有低阻抗的含硫化合物,同時(shí)降低了SEI膜中Li2CO3的含量,降低了SEI膜阻抗,同時(shí)提高了SEI膜的穩(wěn)定性。
綜上所述,高倍率聚合物鋰電池電解液的電導(dǎo)率和成膜阻抗對(duì)鋰離子電池的低溫性能有重要的影響。對(duì)于低溫型電解液,應(yīng)從電解液溶劑體系、鋰鹽和添加劑三方面綜合進(jìn)行優(yōu)化。對(duì)于電解液溶劑,應(yīng)選擇低熔點(diǎn)、低黏度和高介電常數(shù)的溶劑體系,線(xiàn)性羧酸酯類(lèi)溶劑低溫性能優(yōu)異,但其對(duì)循環(huán)性能影響較大,需匹配介電常數(shù)高的環(huán)狀碳酸酯如EC、PC共混使用;對(duì)于鋰鹽和添加劑,主要從降低成膜阻抗方面考慮,提高鋰離子的遷移速率. 另外,低溫下適當(dāng)提高鋰鹽濃度能提高電解液的電導(dǎo)率, 提高低溫性能。
三、高倍率聚合物鋰電池負(fù)極材料
鋰離子在碳負(fù)極材料中的擴(kuò)散動(dòng)力學(xué)條件變差是限制鋰離子電池低溫性能的主要原因,因此在充電的過(guò)程中負(fù)極的電化學(xué)極化明顯加劇,很容易導(dǎo)致負(fù)極表面析出金屬鋰。
研究顯示,在-20°C下,充電倍率超過(guò)C/2就會(huì)顯著地增加金屬鋰的析出量,在C/2倍率下,負(fù)極表面析鋰量約為整個(gè)充電容量的5.5%,但是在1C倍率下將達(dá)到 9%,析出的金屬鋰可能會(huì)進(jìn)一步發(fā)展,最終成為鋰枝晶。因此,當(dāng)電池必須在低溫下充電時(shí),需要盡可能選擇小電流對(duì)鋰離子電池進(jìn)行充電,并在充電后對(duì)鋰離子電池進(jìn)行充分的擱置,從而保證負(fù)極析出的金屬鋰能夠與石墨反應(yīng), 重新嵌入到石墨負(fù)極內(nèi)部。
利用中子衍射等手段對(duì)NMC111/石墨18650型鋰離子電池在低溫-20°C下的析鋰行為進(jìn)行詳細(xì)的研究,電池如圖2所示過(guò)程進(jìn)行充放電,圖3為分別在C/30和C/5倍率下進(jìn)行充電時(shí),石墨負(fù)極物相變化的對(duì)比。
圖2 中子衍射實(shí)驗(yàn)低溫-20°C下充放電過(guò)程ΔQ與時(shí)間的關(guān)系
圖3 不同倍率充電(A)及擱置20h后(B)負(fù)極物相變化對(duì)比
從圖上可以看到對(duì)于兩種不同的充電倍率,貧鋰物相Li1-xC18是非常相近的,區(qū)別主要體現(xiàn)在LiC12和LiC6兩種物相上,在充電的初期兩種充電倍率下負(fù)極中的物相變化趨勢(shì)是比較接近的,對(duì)于LiC12物相,當(dāng)充電容量達(dá)到95mAh時(shí),變化趨勢(shì)開(kāi)始出現(xiàn)不同,當(dāng)達(dá)到1100mAh時(shí),兩種倍率下的LiC12物相開(kāi)始出現(xiàn)顯著的差距,C/30小倍率充電時(shí),LiC12物相的下降速度非???,但是C/5倍率下LiC12物相的下降速度則要緩慢的多,也就是說(shuō)由于低溫下負(fù)極的嵌鋰動(dòng)力學(xué)條件變差,使得LiC12進(jìn)一步嵌鋰生成LiC6物相的速度下降,與之相對(duì)應(yīng)的,LiC6物相在C/30小倍率下增加的非???,但是在C/5倍率下就要緩慢的多,這就表明在C/5倍率下,更少的Li嵌入到石墨的晶體結(jié)構(gòu)之中,但是在C/5充電倍率下電池的充電容量反而要比C/30充電倍率下的容量更高 一點(diǎn),這多出的沒(méi)有嵌入到石墨負(fù)極內(nèi)的Li很有可能是以金屬鋰的形式在石墨表面析出,充電結(jié)束后的靜置過(guò)程也從側(cè)面佐證了這一點(diǎn)
利用EIS方法測(cè)量石墨/Li半電池的阻抗參數(shù)Re、Rf和Rct隨溫度變化的趨勢(shì), 發(fā)現(xiàn)三者均隨溫度降低而增大,其中Re和Rf增長(zhǎng)速率大致相同,而Rct增長(zhǎng)速率更快,當(dāng)溫度降低至-20°C 時(shí),Rct己成為電池總阻抗的主要組成部分,這表明電化學(xué)反應(yīng)動(dòng)力學(xué)條件變差是造成低溫性能變差的主要因素。
選擇合適的負(fù)極材料是提高電池低溫性能的關(guān)鍵因素,目前主要通過(guò)負(fù)極表面處理、 表面包覆、摻雜增大層間距、控制顆粒大小等途徑進(jìn)行低溫性能的優(yōu)化。
1.表面處理
表面處理包括表面氧化和氟化。表面處理可以減少石墨表面的活性位點(diǎn),降低不可逆容量損失,同時(shí)可以生成更多的微納結(jié)構(gòu)孔道,有利于Li+傳輸,降低阻抗。
經(jīng)過(guò)氧化微擴(kuò)層處理,石墨的平均晶粒尺寸減小,鋰離子在碳層表面及邊緣嵌入量增加,在石墨表面引入的納米級(jí)孔隙結(jié)構(gòu)進(jìn)一步增大了鋰離子存儲(chǔ)空間。Wu等利用5at%氟氣在550°C下氟化處理天然石墨,處理后材料的電化學(xué)性能和循環(huán)性能都大大提高。
2.表面包覆
表面包覆如碳包覆、金屬包覆不但能夠避免負(fù)極與電解液的直接接觸,改善電解液與負(fù)極的相容性,同時(shí)可以增加石墨的導(dǎo)電性,提供更多的嵌入鋰位點(diǎn),使不可逆容量降低。另外,軟碳或硬碳材料的層間距比石墨大,在負(fù)極上包覆一層軟碳或硬碳材料有利于鋰離子的擴(kuò)散,降低SEI膜阻抗,從而提高電池的低溫性能。通過(guò)少量Ag的表面包覆提高了負(fù)極材料的導(dǎo)電性,使其在低溫下具有優(yōu)異的電化學(xué)性能。
開(kāi)發(fā)的Fe/Fe3C-CNF復(fù)合材料具有良好的低溫性能,在-5°C循環(huán)55周后仍保持250mAh·g-1的容量。Ohta等研究了不同負(fù)極材料對(duì)鋰離子電池性能的影響,研究發(fā)現(xiàn)無(wú)論是碳包覆人造石墨還是天然石墨, 其不可逆容量相比未包覆的都大大降低。同時(shí)碳包覆石墨負(fù)極能夠有效改善電池的低溫性能,5%包覆量的石墨在-5°C時(shí)的放電容量保持率為常溫時(shí)的90%。Nobili等采用金屬錫包覆的石墨作為負(fù)極材料,在-20°C 時(shí),其SEI膜阻抗和電荷轉(zhuǎn)移阻抗相比未包覆的材料分別降低了3倍和10倍,這表明錫的包覆能夠減小電池低溫下的極化,進(jìn)而提高電池的低溫性能。
3.增大石墨層間距
石墨負(fù)極的層間距小,低溫下鋰離子在石墨層間的擴(kuò)散速率降低,導(dǎo)致極化增大,在石墨制備過(guò)程中引入B、N、S、K等元素可以對(duì)石墨進(jìn)行結(jié)構(gòu)改性,增加石墨的層間距,提高其脫/嵌鋰能力,P(0.106pm)的原子半徑比C(0.077pm)的大,摻P可增加石墨的層間距,增強(qiáng)鋰離子的擴(kuò)散能力,同時(shí)有可能提高碳材料中石墨微晶的含量。K引入到碳材料中會(huì)形成插入化合物KC8,當(dāng)鉀脫出后碳材料的層間距增大,有利于鋰的快速插入,進(jìn)而提高電池的低溫性能。
4.控制負(fù)極顆粒大小
研究了負(fù)極顆粒大小對(duì)低溫性能的影響,發(fā)現(xiàn)平均粒徑分別為6μm和25μm的焦炭負(fù)極在室溫下具有相同的可逆充放電容量,而在-30°C時(shí),粒徑為25μm的焦炭電極僅能放出室溫容量的10%,粒徑為6μm的焦炭電極則可放出室溫容量的61%。
從這一實(shí)驗(yàn)結(jié)果可以得出,負(fù)極粒徑越大,鋰離子擴(kuò)散路徑越長(zhǎng),擴(kuò)散阻抗越大,導(dǎo)致濃差極化增大,低溫性能變差。因此適當(dāng)減小負(fù)極材料顆粒尺寸,可以有效縮短鋰離子在石墨層間的遷移距離,降低擴(kuò)散阻抗,增加電解液浸潤(rùn)面積,進(jìn)而改善電池的低溫性能。另外,通過(guò)小粒徑單顆粒造粒的石墨負(fù)極, 具有較高的各項(xiàng)同性,能夠提供更多的嵌鋰位點(diǎn),減小極化,也能使電池低溫性能明顯提高。
綜上所述,高倍率聚合物鋰電池的低溫性能是制約鋰電池應(yīng)用的關(guān)鍵性因素,如何提高高倍率聚合物鋰電池的低溫性能仍然是目前研究的熱點(diǎn)和難點(diǎn)。
電池體系反應(yīng)過(guò)程主要包括Li+在電解液中傳輸、穿越電解液/電極界面膜、電荷轉(zhuǎn)移以及Li+在活性物質(zhì)本體中擴(kuò)散等4個(gè)步驟。低溫下,各個(gè)步驟的速率下降,由此造成各個(gè)步驟阻抗增大,帶來(lái)電極極化的加劇,引發(fā)低溫放電容量減小、負(fù)極析鋰等問(wèn)題。
提高高倍率聚合物鋰電池的低溫性能應(yīng)綜合考慮電池中正極、負(fù)極、電解液等綜合因素的影響,通過(guò)優(yōu)化電解液溶劑、添加劑和鋰鹽組成提高電解液的電導(dǎo)率,同時(shí)降低成膜阻抗;對(duì)正負(fù)極材料進(jìn)行摻雜、包覆、小顆?;雀男蕴幚?,優(yōu)化材料結(jié)構(gòu),降低界面阻抗和Li+在活性物質(zhì)本體中的擴(kuò)散阻抗。通過(guò)對(duì)電池體系整體的優(yōu)化,減小鋰電池低溫下的極化,使高倍率聚合物鋰電池的低溫性能得到進(jìn)一步提高。
本文鏈接:http://www.ty9ss.com{dede:field.arcurl/}
諾信新聞,諾信公司新聞,鋰電池行業(yè)新聞,展會(huì)新聞